欢迎来到010在线作文网!

数学余弦定理说课稿(3)

说课稿 时间:2021-08-31 手机版

  数学余弦定理说课稿(三)

尊敬的评委老师们:你们好,我今天说课的题目是余弦定理

  (说教材) "余弦定理"是人教A版数学第必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是"正弦定理、余弦定理"教学的第二节课,其主要任务是引入并证明余弦定理,在课型上属于"定理教学课".

  这堂课并不是将余弦定理全盘呈现给学生,而是从实际问题的求解困难,造成学生认知上的冲突,从而激发学生探索新知识的强烈欲望。另外,本节与教材其他课文的共

  性是都要掌握定理内容及证明方法,会解决相关的问题。

  下面说一说我的教学思路。

  (教学目的)

  通过对教材的分析钻研制定了教学目的:

  1.掌握余弦定理的内容及证明余弦定理的向量方法,会运用余弦定理解决两类基本的解三角形问题。

  2.培养学生在方程思想指导下解三角形问题的运算能力。

  3.培养学生合情推理探索数学规律的思维能力。

  4.通过三角函数、余弦定理、向量的数量积等知识的联系,来理解事物普遍联系与辩证统一。

  (教学重点)

  余弦定理揭示了任意三角形边角之间的客观规律,是解三角形的重要工具。余弦定理是初中学习的勾股定理的拓广,也是前阶段学习的三角函数知识与平面向量知识在三角形中的交汇应用。本节课的重点内容是余弦定理的发现和证明过程及基本应用,其中发现余弦定理的过程是检验和训练学生思维品质的重要素材。

  (教学难点)

  余弦定理是勾股定理的推广形式,勾股定理是余弦定理的特殊情形,勾股定理在余弦定理的发现和证明过程中,起到奠基作用,因此分析勾股定理的结构特征是突破发现余弦定理这个难点的关键。

  (教学方法)

  在确定教学方法之前,首先分析一下学生:我所教的是课改一年级的学生。他们的基础比正常高中的学生要差许多,拿其中一班学生来说:数学入学成绩及格的占50%

  左右,相对来说教材难度较大,要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。

  根据教材和学生实际,本节主要采用"启发式教学"、"讲授法"、"演示法",并采用电教手段使用多媒体辅助教学。

  1.启发式教学:

  利用一个工程问题创设情景,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。

  2. 练习法:通过练习题的训练,让学生从多角度对所学定理进行认识,反复的练习,体现学生的主体作用。

  3. 讲授法:充分发挥主导作用,引导学生学习。

  4. 演示法:利用动画、图片,激发学生的学习兴趣,调动学生积极性。

  这节课准备的器材有:计算机、大屏幕。

  (教学程序)

  1. 复习正弦定理(2分钟):安排一名同学上黑板写正弦定理。

  2. 设计精彩的新课导入(5分钟):利用大屏幕演示一座山,先展示,后出现B、C,

  再连成虚线,并闪动几下,闪动边AB、AC几下,再闪动角A的阴影几下,可测得

  AC、AB的长及∠A大小。

  问你知道工程技术人员是怎样计算出来的吗?

  一下子,学生的注意力全被调动起来,学生一定会采用正弦定理,但很快发现

  ∠B、∠C不能确定,陷入困境当中。

  3. 探索研究,合理猜想。

  当AB=c,AC=b一定,∠A变化时,a可以认为是A的函数,a=f(A),A∈(0,∏)

  比较三种情况,学生会很快找到其中规律。 -2ab的系数-1、0、1与A=0、∏/2、∏之间存在对应关系。

  教师指导学生由特殊到一般,经比较分析特例,概括出余弦定理,这种促使学生主动参与知识形成过程的教学方法,既符合学生学习的认知规律,又突出了学生的主体地位。"授人以鱼",不如"授人以渔",引导学生发现问题,探究知识,建构知识,对学生

  来说,既是对数学研究活动的一种体验,又是掌握一种终身受用的治学方法。

  4. 证明猜想,建构新知

  接下来就是水到渠成,现在余弦定理还需要进一步证明,要符合数学的严密逻辑推理,锻炼学生自己写出定理证明的已知条件和结论,请一位学生到黑板写出来,并请同学们自己进行证明。教师在课中进行指导,针对出现的问题,结合大屏幕打出的正

  确过程进行讲解。

  在大屏幕打出余弦定理,为了促进学生记忆,在黑板上让学生背着写出定理,也是当

  堂巩固定理的方法。

  5. 操作演练,巩固提高

  定理的应用是本节的重点之一。我分析题目,请同学们进行解答,在难点处进行点拨。以第二题为例,在求A的过程中学生会产生分歧,一部分采用正弦定理,一部分采用余弦定理,其实两种做法都可得到正确答案,形成解法一和解法二。在这道例题中进行发散思维的训练,(在上例中,能否既不使用余弦定理,也不使用正弦定理,

  求出∠A?)

  启发一:a视为B 与C两点间的距离,利用B、C的坐标构造含A的等式

  启发二:利用平移,用两种方法求出C’点的坐标,构造等式。使学生的思维活跃,渐入新的境界。每次启发,或是针对一般原则的提示,或是在学生出现思维盲点

  处点拨,或是学生"简单一跳未摘到果子"时的及时提醒。

  6. 课堂小结:

  告诉学生余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理

  的特例。

  7. 布置作业:书面作业 3道题

  作业中注重余弦定理的应用,重点培养解决问题的能力。

  以上是我的一点粗浅的认识,如有不对之处,请老师评委们给与指教,我的课说完了,谢谢各位。


本文来源http://www.010zaixian.com/yuwen/shuokegao/59114.htm
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信(zaixianzuowenhezi@gmail.com),我们会及时处理和回复,谢谢.