欢迎来到010在线作文网!

两角差的余弦公式人教版高一数学说课稿(2)

说课稿 时间:2021-08-31 手机版

教法设计

  1、学情分析:

  学生刚刚学习了同角三角函数的变换及平面向量的知识,对用举反例推翻猜想、运用单位圆、用向量解决三角问题已经有了一定的基础,但还远未达到综合运用这些方法自主探究和证明的水平.

  教学手段:

  (1)从知识的认知程序上看,老师看问题从整体到局部,而学生却是从局部到整体。本节课尝试将“带着知识走向学生”的接受式教学模式转变为“带着学生走向知识”的探究式教学模式,充分尊重学生的主体地位.

  (2)本节课的教法采用了“一个主题两种教学”的设计模式.一个主题:公式探究与应用,两种教学:显形教学(知识能力教学)、隐性教学(情商培养),实践两种教学相互促进的人性化教学理念.

  (3)在课堂上营造民主、开放、平等的教学氛围,注重教学评价的多元性,将简单的结果评价上升为对过程的评价;将一味的知识评价拓展为能力评价,突出学生的主体性,实现显形教学与隐性教学的双重评价,为全面发展学生打下基础.

  (4)利用几何画板,通过计算机技术,给学生提供一种验证猜想合理性的途径. (教学媒体设计)

  课堂结构设计:

  引入课题,提出猜想,实验探究,严谨证明,例题训练,课堂小结

  教学过程设计

  1、引入课题:

  例:如图所示,一个斜坡的高为6m,斜坡的水平长度为8m,已知作用在物体上的力F与水平方向的夹角为60°,且大小为10N ,在力F的作用下物体沿斜坡运动了3m,求力F作用在物体上的功W.

  解: W =

  = 30.

  提问:1、解决问题需要求什么?

  2、你能找到哪些与有关的条件?

  3、能否利用这些条件求出?如果能,提出你的猜想.

  4、怎样检验这些猜想是否正确?

  【设计意图】生活实例引入,体现数学与实际生活的联系,也与物理(功的定义)、哲学(透过现象看本质)等相关学科相联系,增强学生的应用意识,激发学生的学习热情,同时也让学生体会数学知识的产生、发展过程.

  2、提出猜想:

  从特殊情况去猜测公式的结构形式.

  令

  令

  分析:可见,我们的公式的形式应该与均有关系?他们之间存在怎样的代数关系呢?请同学们根据下表中数据,相互交流讨论,提出你的猜想.

  用具体值检验猜想的合理性.

  令则=

  三角函数

  三角函数值

  猜想:

  【设计意图】鼓励学生发挥想象力,大胆猜测,然后再去验证其合理性,增强学生探索问题、挑战困难的勇气.

  3、实验探究:

  【设计意图】让学生用几何画板进行数学实验, 激起学生的好奇心和探究欲望, 使学生体会到数学的系统演绎性和实验归纳性的两个侧面.

  4、严谨证明:

  (利用向量)

  前一章我们刚刚学习完向量,并用向量知识解决了相关的几何问题,这里,我们能否用向量知识来推导两角差的余弦公式呢?我们来仔细观察猜想的结构,我们在什么地方见到过类似结构?在向量部分,求角的余弦有什么方法吗?

  (学生:向量的数量积!)

  证明:在平面直角坐标系xOy内作单位圆O,以Ox为始边作角,它们终边与单位圆O的交点分别为A、B,则:

  =, =

  =

  ∴= (0≤≤)

  思考:1、作为两向量的夹角,有没有限制条件?

  2、如果不在[0,]这个区间内,我们的结论还会成立吗?怎样给出证明?(引导学生找到与夹角之间的关系)

  【设计意图】让学生经历用向量知识解出一个数学问题的过程,体会向量方法在数学探究过程中的简洁性。

  思考:1、作为两向量的夹角,有没有限制条件?

  2、如果不在[0,]这个区间内,我们的结论还会成立吗?怎样给出证明?(引导学生找到与夹角之间的关系)

  推广完善:令为、的夹角,

  则

  无论哪种情况,都有

  小结:两角差的余弦公式:

  (其中为任意角,简记为)

  思考:请同学们仔细观察一下公式的结构,说说公式的结构有什么特点?应怎样记忆?(对学生的回答给予及时肯定)

  【设计意图】引导学生关注两个向量的夹角θ与α-β的联系与区别,并通过观察和讨论,增强学生用数形结合、分类讨论的方法解决问题的意识,感受数学思维的严谨性.

  (介绍单位圆的三角函数线法)

  除了以上的证明方法,是否还有其它证法呢?

  我们发现,这里涉及的是三角函数,是这个角的余弦问题,那我们还能不能考虑在单位圆里用三角函数线来推导呢?

  请同学们课后自己在单位圆中画出、,并考虑如何用角的正弦线、余弦线来表示的余弦线?

  这个问题作为课后思考题,请同学们课下相互讨论,共同探索。

  【设计意图】根据教学实际,对教材进行适当安排,把单位圆三角函数线证法留作课后学生思考,为学生的课后探讨留有空间。

  5、例题训练:

  1、解决引例中的问题.

  2、P127练习:已知,求.

  (运用公式时应根据角的范围,正确确定两角正、余弦值的范围)

  公式的逆用:.

  4、公式活用:.

  【设计意图】例1让学生运用所学解决实际问题;例2利用变式突破学生在运用公式过程中的易错点;例3对逆用公式解题加深认识;例4活用公式,加深学生对公式中两角形式变化的认识,强化整体思想。

  6:课堂小结:

  公式探索的一般步骤;公式的结构和功能;公式的运用应注意的问题。

  7、作业:

  P127 练习1、2、3;

  .

  【设计意图】让学生通过自己小结,反思学习过程,加深对公式的推导和应用过程的理解,促进知识的内化;然后用作业巩固本节课所学知识。

  (附:板书设计)

  §3.1.1 两角差的余弦公式

  一、公式

  二、证明

  引例:

  例2:

  例3:

  4:

  小结:

  教学评价分析

  诊断性评价:

  1.按常规,学生很可能想到先探究两角和的正弦公式,怎样想到先研究两角差的余弦公式是一个难点(但非重点),教学时可以直接提出研究两角差的余弦公式。但后面补充老教材的证明方法,让学生明白和与差内在的联系性与统一性,努力让学习过程自然。

  2.尽管教材在前面的习题中,已经为用向量法证明两角差的余弦公式做了铺垫,多数学生仍难以想到.教师需要引导学生,联想到向量的数量积公式和单位圆上点的坐标特点,努力使数学思维显得自然、合理。

  3.用向量的数量积公式证明两角差的余弦公式时,学生容易犯思维不严谨的错误,教学时需要引导学生搞清楚两角差与相应向量的夹角的联系与区别。预期效果:

  1、让学生在掌握两角差的余弦公式探究方法的基础上,能够自我总结形成公式探究的一般方法。

  2、激发学生的探究欲望,能够独立或合作提出推导其它三角恒等式的方案,形成对三角恒等变换的本质认识,加深对灵活运用公式的理解。

  3、培养学生的“问题意识”,在探索的过程中学会将“知识问题化”,大胆、合理地提出猜测,通过证明、完善,最终达到将“问题知识化”的目的.


本文来源http://www.010zaixian.com/yuwen/shuokegao/546577.htm
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信(zaixianzuowenhezi@gmail.com),我们会及时处理和回复,谢谢.