数学说课稿 篇5
一、说教材
1.从在教材中的地位与作用来看
《等比数列的前n项和》是数列这一章中的一个重要资料,它不仅仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,并且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等
2.从学生认知角度看
从学生的思维特点看,很容易把本节资料与等差数列前n项和从公式的构成、特点等方面进行类比,这是进取因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不一样,这对学生的思维是一个突破,另外,对于q=1这一特殊情景,学生往往容易忽视,尤其是在后面使用的过程中容易出错.
3.学情分析
教学对象是刚进入高中的学生,虽然具有必须的分析问题和解决问题的本事,逻辑思维本事也初步构成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,所以片面、不严谨.
4.重点、难点
教学重点:公式的推导、公式的特点和公式的运用.
教学难点:公式的推导方法和公式的灵活运用.
公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学
二、说目标
知识与技能目标:
理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.
过程与方法目标:
经过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学
情感与态度价值观:
经过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点.
三、说过程
学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的构成与发展过程,结合本节课的特点,我设计了如下的教学过程:
1.创设情境,提出问题
在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我能够满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢
设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的进取性.故事资料紧扣本节课的主题与重点.
此时我问:同学们,你们明白西萨要的是多少粒小麦吗引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.
设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而立刻相减呢在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识构成过程的氛围,突破学生学习的障碍.同时,构成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.
2.师生互动,探究问题
在肯定他们的思路后,我之后问:1,2,22,…,263是什么数列有何特征应归结为什么数学问题呢
探讨1:,记为(1)式,注意观察每一项的特征,有何联系(学生会发现,后一项都是前一项的2倍)
探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式.比较(1)(2)两式,你有什么发现
设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,所以教学中应着力在这儿做文章,从而抓住培养学生的辩证思维本事的良好契机.
经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:.教师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢
设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.
3.类比联想,解决问题
这时我再顺势引导学生将结论一般化,
那里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.
设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自我探究公式,从而体验到学习的愉快和成就感.
对不对那里的q能不能等于1等比数列中的公比能不能为1q=1时是什么数列此时sn=(那里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.)
再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来(引导学生得出公式的另一形式)
设计意图:经过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和理解,变为对知识的主动认识,从而进一步提高分析、类比和综合的本事.这一环节十分重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.
4.讨论交流,延伸拓展
数学说课稿 篇6
一、教材分析:
1、教材所处的地位及作用:
本节课选自新人教版数学七年级上册§2.2节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。
2、情分析:
七年级学生刚刚跨入少年期,理性思维的发展还有很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和中小学教材衔接的特点设计了这节课。
二、教学目标:
1.知识目标:
(1)使学生理解多项式中同类项的概念,会识别同类项。
(2)使学生掌握合并同类项法则。
(3)利用合并同类项法则来化简整式。
2.能力目标:
(1)、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;
并且能在多项式中准确判断出同类项。
(2)、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
3.过程与方法:组织学生参与学习、讨论,在合作探究活动中获取知识。
4.情感态度与价值观:激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
三、教学重点、难点:
根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:
重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
四、教学方法与教学手段:
(1)教法分析:
基于本节课内容的特点和七年级学生的心理特征,我在教学中选择互助式学习模式,与学生建立平等融洽的关系,营造自主探索与合作交流的氛围,共同在实验、演示、操作、观察、练习等活动中运用多媒体来提高教学效率,验证结论,激发学生学习的兴趣。(2)学法分析:
教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用。七年级的学生,从认知的特点来看,学生爱问好动、求知欲强,想象力丰富,对实际操作活动有着浓厚的兴趣,对直观的事物感知欲较强,是形象思维向抽象思维逐步过渡的阶段,他们希望得到充分的展示和表现,因此,在学习上,应充分发挥学生在教学中的主体能动作用,让学生自己通过观察、类比、活动、猜想、验证、归纳,共同探讨,进行小组间的讨论和交流、利用课件和实物自主探索等方式,激发学习兴趣,培养应用意识和发散思维。
五、教学过程:
环节教学设计设计意图
温
故
而
知
新1.—5+3=,4—2=.
2.—2ab的系数是次数是
3.组成多项式2xy-3xy2+1的项分别为,,.
4.30米+50米=.复习旧知识,为新知识作铺垫,激发学生的求知欲
创设情境
一问题1:
我们到动物园参观时,发现老虎与老虎关在一个笼子里,熊猫与熊猫关在另一个笼子里。为何不把老虎与熊猫关在同一个笼子里呢?
问题2:
(1)在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类.
(2)生活中处处有分类的问题,在数学中也有分类的问题吗?目的在于引发和提高学生学习的积极性,启发学生的探索欲望,加强学科联系,并注意联系生活,同时为本课学习做好准备和铺垫。
形成概念
议一议:
10a和20a2b2和6b2-9xy和5xy5ab和-13ab 有什么共同点?
2.思考:归为同类需要有什么共同的特征?(引导学生看书,让学生理解同类项的定义)
让学生充分发挥主体作用,从自己的视点去观察、归纳、总结得出同类项的概念。
强化概念
1、“真真假假”下列每组式子分别是同类项吗?为什么?
(1)x与y;(2)ab与ab;-3pq与3pq;
(4)abc与aca与a;(5)ab与abc;
2、K取何值时,-3xy与-xy是同类项?
3、填充:(1)在()内填上相应字母,使得2()3()2与-x2y3是同类项;
(2)若和是同类项,则=;使学生牢固掌握同类项的知识,进一步加强对同类项概念的理解。增强应用意识,培养学生的发散思维。
创设情景二
如果一个多项式中含有同类项,那么常常把同类项合并起来,使结果得到简化,那么怎样才能把同类项合并起来呢?请同学们思考下面的问题?以生活实例为切入点,通过对简单的、熟悉的数量运算,激发学生学习合并同类项的欲望,从而较自然的引入新课题。
练问题1:
3ab+5ab=_______理由是________
-4xy2+2xy2=_______理由是_______
-3a+2b=理由是_______
问题2:
不在一起的同类项能否将同类项结合在一起?为什么?
例如:6xy-10x2-5yx+7x2
运用加法交换律和结合律将同类项结合在一起,原多项式的值不变。
合并同类项:
把同类项合并成一项就叫做合并同类项
法则:
(1)系数:各项系数相加作为新的系数
(2)字母以及字母的指数不变。
合并同类项一般步骤:
6xy-10x2-5yx+7x2———找
=(6xy-5yx)+(-10x2+7x2)———移
=(6-5)xy+(-10+7)x2———并
=xy-3x2
尝试训练一:
(1)3x-8x-9x
(2)5a2+2ab-4a2-4ab
(3)2x-7y-5x+11y-1
尝试练习二:
当x=2,y=3时
求多项式 的值。
对比计算:同桌采用两种不同的方法来计算,以得出较优化的方法——先化简,再求值。
例题:已知a=,b=4,
求多项式2a2b-3a-3a2b+2a的值.分解难度,设计过渡问题,使学生能自然的感受法则的探索过程。
以一道例题的训练为桥梁来得出合并同类项的一般步骤。体现新课程中以学生为主,注重学生参与的理念。
小组共练互批,及时纠错,共同提高。
求多项式的值,常常先合并同类项,化简后再求值,这样比较简便。
数学与生活:
某住宅的平面结构如图所示(墙体厚度不计,单位:米)
(1)该住宅的使用面积是多少平方米?
(2)房的主人计划把住宅的地面都铺上地砖,若选用的地砖的价格是30元/平方米,其中x=4,y=3那么买地砖至少需要多少元?
谈一谈:通过本课的学习你有何收获?
课堂感悟:
1、什么叫合并同类项?
把多项式中的同类项合并成一项,叫合并同类项
2、合并同类项的法则是什么?
把同类项的系数相加,所得结果作为系数,字母和字母的指数不变
必做题:
1、在下列代数式中,指出哪些是同类项。2x2,0,-3x,-x2y,(x+y)2,xy2,x2y,6x,-x2y,0.5,-x2,2(x+y)2;
2、合并同类项
①3y+2y ②3b-3a3+1+a3-2b
③2y+6y+2xy-5 ④6mn+4m2n-3mn+5mn2
3、填充:(1)在()内填上相应字母,使得2()3()2与5x2y3是同类项;(2)若x3ym和xny2是同类项,则=;(3)若(n-3)x2yz和x2yz是同类项,则;
选做题:你会玩下面的两个数字游戏吗?游戏步骤:任写一个两位数交换十位和个位数,得到一个新两位数求这两个两位数的和。做完后观察结果,你发现了什么?这个规律对任何一个两位数都成立吗?如果成立,如何说明呢?你能自编一个数学游戏吗?这个游戏有什么特点?与同伴一起玩这个游戏。通过对熟悉的事物,让学生感受到数学就在身边,激发学生想象力,启迪创新,应用意识。
小组讨论
进一步让学生巩固基本知识,渗透数学分类思想;使知识结构更完善。
必做题进一步巩固学生所学知识,及时发现和弥补知识缺陷,起到课后巩固和反馈作用。在第二项作业中利用游戏为下面的学习埋下了伏笔,这样就可以激发学生想象力,启迪创新,应用意识。
【实用的数学说课稿汇编六篇】相关文章:
本文来源:http://www.010zaixian.com/yuwen/shuokegao/4342614.htm