《圆柱的体积》教学设计4
学情分析:
根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学目标:
1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。
2.通过圆柱体体积公式的推导,培养学生的分析推理能力。
3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学重点:
圆柱体体积的计算
教学难点:
圆柱体体积公式的推导
教学用具:
圆柱体学具、
教学过程:
一、复习引新
1.求下面各圆的面积(回答)。
(1)r=1厘米; (2)d=4分米; (3)C=6.28米。
要求说出解题思路。
2.提问:什么叫体积?常用的体积单位有哪些?
3.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)
二、探索新知
1、根据学过的体积概念,说说什么是圆柱的体积。(板书课题)
2、公式推导。(有条件的可分小组进行)
(1)请同学指出圆柱体的底面积和高。
(2)回顾圆面积公式的推导。(切拼转化)
3、回顾了圆的面积公式推导,你有什么启发?
生答:把圆柱转化成长方体计算体积。
4、动手操作。
请2位同学上台用教具来演示,边演示边讲解。
把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。
多请几组同学上台讲解,完善语言。
提问:为什么用“近似”这个词?
5、教师演示。
把圆柱拼成了一个近似的长方体。
6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?
生答:拼成的物体越来越接近长方体。
追问:为什么?
生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
7、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。
师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?
出示讨论题。
(1)、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?
(2)、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?
(3)、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?
板书:
长方体体积 底面积 高
圆柱体积 底面积 高
8、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。
9、用字母如何表示。
V=sh
10、小结。
圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?
11、教学算一算
审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)
12、教学“试一试”
小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。
三、巩固练习
课后“练一练”里的练习题。
四、课堂小结
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱转化长方体)得出了圆柱体的体积计算公式V=Sh。
《圆柱的体积》教学设计5
教学目标
1.使学生初步理解和掌握圆柱的体积计算公式。会用公式计算圆柱的体积,并能应用分式解答一些实际问题。
2.在充分展示体积公式推导过程的基础上,培养学生推理归纳能力和自学能力。
教学重点: 圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教学难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教 法:启发点拨,归纳总结,直观演示
学 法:自学归纳法,小组交流法
课前准备:课件
教学过程:
一、定向导学(5分)
(一)导学
1.什么叫体积?(指名回答)
生:物体所占空间的大小叫做体积。
师:你学过哪些体积的计算公式?(指名回答)
根据学生的回答,板书:
长方体体积=底面积×高
2.圆面积公式是怎样推导出来的?
生:把一个圆,平均分成数个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,(根据学生的叙述,边用幻灯片演示。)得到圆面积公式s=2πr。
3.动脑筋想一想,圆柱的体积,能不能转化成你学过的形体,推导出计算圆柱体积的公式?
4、导入
我们已经认识了圆柱体,学会了圆柱体侧面积和表面积的计算,今天研究圆柱的体积。(板书:圆柱的体积)
(二)定向
出示学习目标:
1、理解和掌握圆柱的体积计算公式。
2、会用公式计算圆柱的体积,并能运用公式解答一些实际问题。
二、合作交流(15分)
1.阅读书25页。
2、看书回答:
(1)圆柱体是怎样变成近似长方体的?
(2)切拼成的长方体的体积、底面积和高分别与圆柱体的体积、底面积、高有什么关系?
(3)怎样计算切拼成的长方体体积?为什么 ?用字母怎样表示?
3、小组展评交流结果。
(1)展评题(1)。圆柱体是怎样变成长方体的?把圆柱体底面分成许多相等的扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。(教师加以说明,底面扇形平均分的份数越多,拼成的立体图形越接近长方体。)
(2)展评题2。
切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。
(3)展评题3
圆柱体积=底面积×高
v=sh
4、公式检测
学生独立完成书上做一做1、2题。
三、自主学习(5)
1、出示例6
下面这个杯子能不能装下这袋奶
直径8厘米 高10厘米 这袋奶498毫升
2、尝试列式计算.
3、学生展示自学结果。
4、小结
小结:要求圆柱体积,必须知道圆柱的底面积(如果给半径、直径、底面周长,先求出底面积)和高。注意统一单位名称。
四、质疑探究(2)
已知圆柱的底面周长和高又怎样求圆柱的体积?
五、
小结检测
(
13
分)
(一)小结
让学生说出圆柱体积的推导过程,体积公式。
(二)检测
1、把圆柱切开,可拼成一个( ),圆柱的体积等于近似长方体的( ),圆柱的底面积等于( ),圆柱的高等于( ),所以圆柱的体积=( )。
2.圆柱体的底面积3.14平方分米,高40厘米。它的体积是多少?
3.一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?
4 判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。( )
(2)圆柱体的高越长,它的体积越大。( )
(3)圆柱体的体积与长方体的体积相等。( )
(4)圆柱体的底面直径和高可以相等。( )
5、 一张长方形的纸长6.28分米,宽4分米。用它分别围成两个圆柱体,它们的体积大小一样吗?请你计算一下。
板书设计:
圆柱的体积
圆柱体积=底面积×高
v=sh
75× 90=6750(立方厘米) 杯子的底面积:3.14×(8/2) ×(8/2) ×10=502.4(ml)
答:它的体积是6750立方米。答:这个杯子能装下这袋奶。
【《圆柱的体积》教学设计】相关文章:
4.圆柱的体积评课稿
8.圆柱的体积练习题
本文来源:http://www.010zaixian.com/yuwen/jiaoxuesheji/1932962.htm