要解决条件概率推理问题,就必须对仅包含基本事件的标准概率空间Ofl,B,P)进行扩充,使其能够包含条件事件.关于条件事件代数的定义,现有多种描述方式,GNW条件事件代数是其中较有代表性的一种.该代数系统是从标准概率空间出发,去寻找一个新的可测空间(岛方),使该可测空间不仅包含概率论中的基本事件,而且还包含诸如“ifEthenH”等规则形式的“条件事件”,这样就可以进行条件推理了.
2.1.3传统概率逻辑模型的简单分析
从上述传统概率模型的介绍可以看出,标准概率逻辑模型并没有突破标准概率空间的限制,是一种在逻辑框架内解决概率逻辑不确定性推理的方法.但由于标准概率空间中仅包含了基本事件,没有包含条件事件,因此它无法实现逻辑框架内的条件推理.另外,该模型中定义的逻辑关系都是刚性化的,这种刚性化的逻辑关系无法满足现实问题对逻辑关系柔性化的需求.
可能世界概率逻辑模型是通过扩充概率空间来实现的.尽管它可以用类似于经典逻辑中的假言推理来解决概率推理中的概率蕴含问题,但仍存在以下两个严重问题:第1,这种模型仅适应于命题集较小的情况,当命题集较大时,非线性方程组的次数会随命题集中命题个数的增加而升高;第2,利用解方程组的方法超出了逻辑学的范畴,未能在逻辑框架内解决问题.
GNW条件事件代数模型虽然通过扩充概率逻辑空间能够解决条件推理问题,但也存在两个严重缺陷:第1,该模型不是完全布尔型的,概率论中的一些典型定理在该模型中已不再适用;第2,对概率测度P扩张以后得到的P。,也已不是一个概率测度.例如,
这些都是人们所不希望的.因此,条件事件代数也不是在逻辑框架内解决概率逻辑推理问题的最佳方法.通过对这些传统概率模型的分析可以看出,要解决概率逻辑关系的柔性化问题,实现逻辑框架内的概率逻辑不确定推理,必须寻求新的逻辑学模型.泛逻辑学的出现为解决这一问题提供了可能.
2.2概率逻辑关系柔性化的思想
从泛逻辑学的角度来看,广义相关系数^=0.75是一种独立相关状态,对应着概率算子:
它说明,现有概率逻辑仅是泛逻辑学在k=0,^e[0.5,1]时的一种特例.基于泛逻辑学的这一思想,从逻辑关系柔性化的角度分析概率逻辑算子^,v,A及|,可得到以下两个重要启示:
(1)概率逻辑作为泛逻辑学在A=0.5,he[0.5,1]时的一个特例,其算子将受到广义相关系数h的影响.即当h在区间[0.5,1]中发生变化时,概率逻辑算子应该随着h的改变而作柔性变化.但是,现有概率逻辑算子^,v,A都没有考虑广义相关性的影响,也都没有建立这些逻辑算子和h之间的联系.实际上,应该能够在泛逻辑学框架内建立起这种受h控制的柔性的^,v,A算子函数.
(2)条件概率Mab)虽然考虑到了独立性,也定义了独立相关时的条件概率公式,但对非独立相关时的条件概率却没有建立起它与h之间的联系.事实上,独立性与条件概率存在以下关系:
它说明,广义相关性与条件概率之间是存在一定联系的,我们应该能够在泛逻辑学框架内用一个受h控制的条件概率函数来描述它们之间的这种联系.
2.3概率逻辑关系柔性化的方法
由于泛逻辑学在k=0.5,he[0.5,1]时所研究的问题对应于概率逻辑问题,这就为我们在泛逻辑学框架内解决概率逻辑关系柔性化问题提供了理论依据.
在泛逻辑学中k=0.5属零级不确定性问题,因此可用其零级N/T/S泛数完整簇来构造柔性的概率逻辑算子函数,包括^,v,A,|等.以条件概率算子“|”为例,可将描述与运算的T范数完整簇:
因此,可使用精确的Frank相容算子簇来构造概率逻辑的^,v,A,|等算子函数.
按照这种方法,就可以在泛逻辑学框架内建立起一个柔性化的新的概率逻辑体系.这种新的概率逻辑体系能够改进经典概率逻辑的推理性能.仍以条件概率为例,由于经典概率论中的条件概率是基于独立性定义的,并没有考虑广义相关性的影响,因此盲目使用条件概率就有可能会出现偏差.而对受h控制的新的条件概率函数,则可避免这种偏差,保证条件概率使用的正确性.
3结论
泛逻辑学对模糊逻辑关系柔性化的研究,为在逻辑框架内解决逻辑关系的柔性化问题指明了方向,是逻辑学发展史上的又一次飞跃.基于泛逻辑学的思想和方法,在逻辑学框架内建立起柔性化的新的概率逻辑体系,不仅对概率逻辑,而且对基于概率的各种不确定性推理方法都将具有重要的学术意义和实用价值.
【基于泛逻辑学的逻辑关系柔性化研究的论文】相关文章:
本文来源:http://www.010zaixian.com/shiyongwen/2929203.htm